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1 Introduction

Let V be a three-dimensional real inner product space; for example, V = R3

where R denotes the real numbers. By a tensor we mean a linear transforma-
tion from V into V. Let Sym denote the linear space of symmetric tensors,
and let Psym denote the open subset of Sym consisting of all symmetric
positive-definite tensors. Consider a function f : R+ --- R, where R+ denotes
the positive reals. We may define a corresponding isotropic tensor function
f : Psym --+ Sym as follows. If A E Psym has the spectral decomposition

3

A = ae 9ei(1.1)
i=1

then f(A) has the spectral decomposition

3f (A) f y~(ai)ei 0 ei. (1.2)

Note that A and f(A) are coaxial, i.e., they have a common principal basis
{ e,}. The cigenvalues of A and f(A) corresponding to the eigenvector ei are
ai and f(ai), respectively. In the case where the eigenvalues of A are not
distinct, it is easily shown that the right-hand side of (1.2) is independent of
the particular principal basis {ei} used in the spectral decomposition of A.

Now consider a motion X of a deformable body over some time interval I.
We identify the body with a reference configuration B C V, so that the motion
is a mapping X : B x I --* V. The deformation gradient F = DX admits the
polar decomposition

F=RU=VR, (1.3)

where the symmetric positive-definite tensors U and V are called the right
and left stretch tensors, respectively, and the proper orthogonal tensor R is
called the rotation tensor. The principal stretches {A,} are the eigenvalues
of U and V. A principal basis {ui} of U is called a Lagrangian triad; a
?rincipal basis {vi} of V is called an Eulerian triad. These triads are said
to be corresponding if

vi=Rui, i=1,2,3. (i.4)

Such a correspondence is always possible in view of (1.3)2. We denote the
stretching tensor by D and the spin tensor by W; they are the symmetric
and skew parts, respectively, of the velocity gradient L. If $ is a scalar, vector
or tensor field associated with the motion X, then 4 denotes the material
time derivative of 0.



By a strain measure we mean a suitably smooth function f : R+ -- R
satisfying

f(1)=, f'(1)-1, f'>O. (1.5)

Hill [8] introduced the class of generalized Lagrangian strain tensors. These
are tensors of the form f(U), where f is the tensor function corresponding to
the strain measure f. For example, by taking f(x) = (x 2 -1)/2 we obtain the
Green-St. Venant strain tensor (often called the Lagrangian strain tensor)
(C - 1)/2, where I denotes the identity tensor and C = FTF = U2 is the
right Cauchy-Green tensor. Hill [9,10] derived a simple component formula
for the material time derivative of f(U):

Aif'(A,) Dij ifA, = Aj
f(U) = 2AiA j f(A) - f(Aj) (1.6)

Ai A Ai- j LD if Ai A3.

Here f' denotes the derivative of f, {Dij} are the components of D relative
to the Eulerian triad, and {f(U)'ijI are the components of f(U) relative to
the corresponding Lagrangian triad. We will refer to equation (1.6) as Hill's
Formula. Hill [9] used this formula to obtain a simple component formula for
the stress tensor S work-conjugate to the strain tensor f(U) for an arbitrary
elastic material. In the same paper Hill utilized (1.6) to study a class of
constitutive inequalities of the form

tr(Sf(U)') > 0 (1.7)

for isotropic elastic solids. Apart from these important applications, Hill's
Formula is of general interest since most of the finite strain tensors used in
continuum mechanics are of the form f(U) or f(V) for some analytic strain
measure f.

Gurtin and Spear [6] and Hoger [11] remarked that the derivations of
Hill's Formula given by Hill and others are not rigorous when the principal
stretches are repeated, i.e., when Ai = A for some i 9 j. In fact, we are
not aware of any rigorous proof of Hill's Formula for the case of repeated
principal stretches.' Nevertheless, Hill's Formula and his proof are widely
cited in the mechanics literature without qualification. Hence we feel that
both a rigorous proof of Hill's Formula and a detailed explanation of the
gaps in Hill's proof are called for. By a rigorous proof we mean one which
is valid for any sufficiently smooth motion X and any sufficiently smooth
strain measure f. Throughout this paper we assume only that X is C 2, i.e.,

1For the special case f = In, a rigorous proof has been given by Hoger [11); see the
discussion at the end of Section 6.
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twice continuously differentiable. Then F, R, U and V are C1 functions of
position and time, and L, D and W are continuous functions of position and
time, where the position may be taken relative to either the reference or the
current configuration. As will become clear from the results in Sections 2-4,
requiring X to be C- instead of just C2 does not lead to any simplification
in the proof of Hill's Formula.

In Section 2 we give two simple examples of a C- homogeneous motion for
which the Lagrangian and Eulerian triads are discontinuous functions of time.
It follows that any proof of Hill's Formula which requires the differentiability
of the Lagrangian triads cannot be valid for all C-* motions. In this section
we also review some relevant theorems on the smoothness of eigenvalues and
eigenvectors.

In Section 3 we review the derivation of Hill's Formula given by Hill [10]
and we discuss the difficulties with the "limiting process" proposed by Hill
for handling the case of repeated principal stretches. We also show that
this limiting process may be avoided whenever the Lagrangian triad is a
differentiable function of time, and thus in particular whenever the number of
distinct principal stretches is constant or whenever U is an analytic function
of time.

In Section 4 we derive a component form of the chain rule for a tensor-
valued function of a time-dependent symmetric tensor. This general result,
together with some well-known kinematic identities, yields a simple but rig-
orous proof of Hill's Formula. In Section 5 we derive analogous component
formulas for f(V) ° - the Jaumann rate of the generalized Eulerian strain
tensor f(V). We show that these formulas hold relative to any corresponding
Lagrangian and Eulerian triads, provided that the strain measure f is C1.

In Section 6 we apply the results of the preceding sections to the logarithmic
strain tensors.

In Part II we use the component formulas of the present paper to derive
approximate basis-free formulas for f(U)" and f(V)*. In Part III we show
how the component formulas can be converted to exact basis-free formulas
of the type obtained by Hoger [11] for the special case f = In.

2 Smooth motions with discontinuous
Lagrangian triads

A common misconception in the mechanics literature is that smoothness of
the Lagrangian triad corresponding to a fixed material point follows from
smoothness of the motion. Two counterexamples are given below. For both
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examples we consider a motion X : V x R -. R of the form

X(X, t) = U(t)X, (2.1)

where U : R - Psym. Then F = U = V and R = I. Hence X is a
homogeneous pure stretch; in particular, the Lagrangian and Eulerian triads
coincide and are independent of position X.

For the first example, let

I + e-_/t 2 A+ t > 0

U(t) I t =0 (2.2)
• I + e-llt2 A -  t < 0,

where A+ and A- are noncoaxial symmetric positive-definite tensors with
eigenvalues {a+} and {a-}, respectively.2 Then U(t) has eigenvalues

1 + e1/t 2 a+ t >0
A,(t) = 1 t = 0 (2.3)

1 +e-1/t 2 a, t<O.

Since each Ai is positive, U(t) E Psym for all times t. Both U and its
eigenvalues are C- functions whose derivatives of all orders vanish at time
t = 0. For i > 0 the principal axes of U(t) are the principal axes of A + , while
for t < 0 the principal axes of U(t) are the principal axes of A-. Since A+
and A- are noncoaxial, the principal axes of U have a jump discontinuity
at t = 0. Hence, for this choice of U the motion X is a C-" homogeneous
pure stretch with C- principal stretches, and yet the Lagrangian triad has
a jump discontinuity at time t = 0.

For the second example, let

{ I + e-/2A(t) t 0 (2.4)1 I 0=O

where [ cos(2/t) sin(2/t) 0 .
[A(t)) sin(2/t) -cos(2/t) 0 J(2.5)

0 0 0

relative to some fixed orthonormal basis.3 Then Ai(0) = 1, and for t 5 0 the
eigenvalues of U(t) are

A,(t) = 1 + e- /t 2 , A2(t) = 1 - ,/t
2 , A3(t)= 1. (2.6)

2This is a trivial modification of an example due to H. Shaw in the paper by Goff (4].
3 This is a trivial modification of an example due to Rellich [19, p. 41].
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C:,ce each A, is positive, U(t) E Psym for all times t. Both U and its
eigenvalues are C- functions whose derivatives of all orders vanish at time
t = 0. For t :A 0. a corresponding C- principal basis is

u,(t) = (cos(l/t), sin(l/t), 0)
u2 (t) = (sin(l/t), -cos(l/t), 0) (2.7)

u 3 (t) = (0, 0, 1).

These basis vectors are unique to within a sign since the Ai(t) are distinct
for t 5 0. Although any orthonormal basis is a principal basis for U(0), the
basis vectors ul(t) and u2(t) do not have limits as t --+ 0- or t -- 0+. In fact,
if we set

el(0) = (cos0, sin0, 0) and e2(0) = (sin0, -cos0, 0), (2.8)

then for any angle 0 therc is a sequence of times t,, - 0 such that
u,(t,) = e,(9) and u,(t,) = e2(O) for each positive integer n; e.g., take
t, = 1/(0 + 2nir). Also note that

1 1ui(t)= -u2(t), I'1(t) = - u(t). (2.9)

Hence, for this choice of U the motion X is a C- O homogeneous pure stretch
with Co principal stretches, and yet. the Lagrangian triad is discontinuous
at time t = 0 and spins at a rate which becomes infinite as t - 0.

The two examples above have the following properties in common:

1. The stretch tensor U is not an analytic function of time at t = 0.

2. The multiplicity of some of the principal stretches changes at t = 0:
i.e., there is no time interval containing t = 0 on which the principal
stretches have constant multiplicity.

3. The principal stretches are not distinct at t = 0.

Indeed, if the stretch tensor U corresponding to a fixed material point is a
C' function of time, and if U fails to have a C' principal basis at time t = 0,
then these conditions must hold. This is a consequence of the following
fundamental theorems:

1. An analytic time-dependent symmetric tensor has analytic eigenvalues
and a corresponding analytic principal basis.

2. A Ck (k = 1,2,..., oo) time-dependent symmetric tensor has Ck eigen-
values and a corresponding Ck principal basis on any time interval for
which the the eigenvalues have constant multiplicity, i.e., on any time
interval for which the number of distinct eigenvalues is constant.
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3. The eigenvalues of a continuous time-dependent symmetric tenso," are
also continuous functions when ordered by magnitude.

These theorems are valid for any finite-dimensional inner product space.
The first theorem is due to F. Rellich; proofs can be found in Rellich [19,
§1.1] and Kato [12, §11.6]. Proofs of the second theorem can be found in
Nomizu [17]4 and Kato [12, §11.5.7, §11.4.2]. A proof of the third theorem
can be found in Rellich [19, §1.3]. One consequence of this theorem is that
if the eigenvalues of a continuous symmetric tensor A are distinct at some
time t, then A has continuous distinct eigenvalues on some time interval
containing t; if A is in fact Ck (k = 1,2, ... , oo), then by the second theorem
the eigenvalues and corresponding principal basis are Ck at time t.

Requiring the principal stretches to have constant multiplicity, or requir-
ing the stretch tensor to be an analytic function of time, is too restrictive
in general. Consider, for example, a smooth wave traveling into a region of
the body which is at rest. Let X0 be a material point which is ahead of the
wave for all times t < to and on the wavefront at t = to. Since U(Xo, t) is
constant for t < to, U must be a non-analytic function of time at t = to, for
otherwise U would be constant for all time.

3 Hill's Formula for smooth Lagrangian triads

We begin by reviewing the derivation of Hill's Formula given by Hill [10].
Let D denote the rotated stretching tensor:

D = RTDR, (3.1)

where a T superscript denotes the transpose. Recall the well-known formula
(Truesdell and Noll (20])

1.

b = -(UU- 1 + U- 1 Uj), (3.2)
2

which follows from the polar decomposition of F and the identity F = LF.
The right stretch tensor U has the spectral decomposition

3

U =Z Aiui®u. (3.3)
i=1

Let {Uij } and {b,3 } denote the components of 1 and D, respectively, relative
to the Lagrangian triad {uj}; for example,

3

U0 = 1 jUiju,® uj, U1,.= ui i.u,, (3.4)
ij=l

4Nomizu states his result for the C' case only, but his proof is valid for the Ck case.
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where a b denotes the inner product of the vectors a and b. Let {Di,} denote
the components of the stretching tensor D relative to the corresponding
Eulerian triad {vi}. Since vi = Rui, the component form of (3.1) and (3.2)
is (Hill (10)

Dij = D -j = 2 AiAUi (3.5)

This formula is valid relative to any corresponding Lagrangian and Eulerian
triads; in particular, the triads need not be continuous functions of time.

Now assume that the Lagrangian triad {uj} corresponding to any fixed
material point is a differentiable function of time. Since Ai = ui -Uu,, the
principal stretches are also differentiable functions of time. Let C1 denote
the spin of the Lagrangian triad, i.e., C is the time-dependent skew tensor
satisfying

fui = "i,. (3.6)

By differentiating the spectral decomposition (3.3) and using (3.6), we obtain
3

uj = j & U~i u + flu - Ul. (3.7)
i=1

The generalized Lagrangian strain tensor f(U) corresponding to the strain
measure f has the spectral decomposition

3

f(U) = f(A)u i ® ui. (3.8)

By differentiating (3.8) and using (3.6), we obtain
3

f(U)"= f'(A,)Aiui ® ui + ff(U) - f(U)CI. (3.9)
i=1

Let {2ij} and {f(U)'} denote the components of C1 and f(U)', respectively,
relative to {ui}. Then the component form of (3.7) and (3.9) is

= ( if i = j (3.10)U 1 = j - Aj ))jj if i 34j,

and

f { f(,)Ai if i = j (3.11)f(U)' I Vf(Aj) - AIf(]lij if i 0 j.

By substituting (3.10) into (3.5), we obtain (Hill 9,10])

Ad~i if : =j
A 2 ifij = (3.12)

7ij if i 0 j.
7



By solving (3.12), for A, and solving (3.12)2 for fO, and then substituting
the results into (3.11), we obtain (Hill [9,10])

f(U)' = Aif'(A\) D, , (3.13)

and

,= j f(;) - f (Aj) D,, if i jand A ,Aj. (3.14)f(U)" =A. + .Aj Ai - Aj

It remains to determine f(U)'ij for the case where i j and Ai - Aj. Hill [9]
claimed that the formula

f(U)'ij = Aif'(Ai) D if i : j and Ai = Aj (3.15)

follows "by a limiting process", but he did not provide any details. Hill [10]
stated that the coefficient of Dij in (3.14) approaches Ai f'(A ) in the limit as
Ai -+ Aj. While this is indeed true, it does not constitute a proof of (3.15), as
we will explain below. Equations (3.13)-(3.15) constitute Hill's Formula -
equation (1.6). For the case of distinct principal stretches, various authors
have re-derived Hill's Formula using essentially the same arguments given
above. Some authors (Guo and Dubey [5]) have also invoked Hill's "limiting
process" for the case of repeated principal stretches.

Let us examine Hill's proof more closely. Recall that the following as-
sumptions were utilized:

1. The Lagrangian triad {ui} corresponding to a fixed material point is a
differentiable function of time.

2. The function f is differentiable.

Clearly, Hill's derivation of equations (3.13) and (3.14) is valid under as-
sumptions 1 and 2. In particular, f need not be a strain measure. Hence
for the remainder of this paper we do not impose the conditions (1.5) on f.
Moreover, since U is a C 1 function we know from the discussion in §2 that,
for a fixed material point, A, and u, (i = 1,2,3) are in fact C1 functions of
time at any instant at which the Ai are distinct. And since (3.13) and (3.14)
constitute Hill's Formula in this case, it follows that for any point X and
time t at which the three principal stretches are distinct, Hill's derivation of
Hill's Formula is valid under assumption 2 only. Now consider a point X0
and time to at which A,(Xo, to) = Ak(Xo, to) for some i #: k. The examples
in §2 show that the Lagrangian triad need not be a continuous, let alone
differentiable, function of time at t = t0 . Therefore, in general we cannot
eliminate assumption 1 in Hill's derivation of (3.13) and (3.14).
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Now assume that i # j and consider Hill's derivation of (3.15) from (3.14).
One problem with Hill's limiting argument is that we are not free to allow
A to approach Aj in (3.14). For a given motion X, the principal stretches
are given functions of position and time, and (3.14) is an identity which
holds only for those points X and times t at which Ai(X,t) # Aj(X, t). If
Ai(Xo, t) = Aj(Xo, t) for all t in some time interval containing to, then (3.14)
does not hold for any time t in this interval. Clearly, in this case no infor-
mation about f(U)',j(X0 , to) can be obtained from (3.14) by taking limits
as t --- to. Similarly, if Aj(X, to) = Aj(X, to) for all points X in some neigh-
borhood of X0 , then no information about f(U)'ij(Xo, to) can be obtained
from (3.14) by taking limits as X - X0. Therefore Hill's derivation of (3.15)
from (3.14) "by a limiting process" is not valid even if assumption 1 holds.
Summarizing, we conclude that Hill's derivation of Hill's Formula is gen-
erally valid only for those points X and times t at which the three principal
stretches are distinct, in which case his derivation is valid assuming only that
the strain measure f is differentiable.

There is a trivial but rigorous proof of (3.15) which avoids any limiting
process and which is valid under assumptions 1 and 2. By (3.11)2 and (3.12)2
we see that

f(U = Dj = 0 ifi- jandAj=Aj. (3.16)

Thus (3.15) holds trivially! This simple argument appears to have been
overlooked in the literature. Since (3.13) and (3.14) have also been shown
to hold under assumptions 1 and 2, we have shown that Hills' formula is
valid for all times under assumptions 1 and 2. We have also observed that
assumption 1 can be eliminated when the principal stretches are distinct. In
fact for a given material point, assumption 1 can be eliminated on any time
interval during which the number of distinct principal stretches is constant.
For on any such time interval the Lagrangian triad is a C1 function of time;
see the second theorem at the end of §2. Similarly, from the first theorem at
the end of §2 we see that Hill's Formula is valid whenever U is an analytic
function of time.

For times to at which the multiplicity of some of the principal stretches
changes, it turns out that Hill's Formula can be obtained from (3.13) and
(3.14) by a rigorous limiting process even when assumption 1 is eliminated,
but this result is by no means obvious. The proof, which requires the addi-
tional assumption that both f and the corresponding tensor function f are
Ci, will be omitted in favor of the simple proof of Hill's Formula given in the
next section. Here we merely point out one of the technical difficulties which
must be addressed when a limiting process is employed. As shown by the
examples in §2, the Lagrangian triad {u,} and the Eulerian triad {v,} need
not have limits as t - to. Thus, even though f(U)" and D are continuous,
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the components f(U)'i, = ui. f(U)'uj and Dij = vi. Dvj in (3.13) and (3.14)
need not have limits as t -- to.

4 A rigorous proof of Hill's Formula
Our proof of Hill's Formula is based on a component form of the chain rule
for a tensor-valued function of a time-dependent symmetric tensor. Consider
any differentiable function f : R+ -.- R, and let f : Psym -+ Sym denote the
corresponding tensor function. Let A : I -- Psym be differentiable, where I
is an interval of R. Then,

Tf(A) E f o A : I - Sym. (4.1)

We interpret I as a time interval, so that A and f(A) are interpreted as time-
dependent symmetric tensors. Although these tensors need not be associated
with the motion of a body, we will denote their derivatives by A and f(A)',
respectively. By the chain rule, f(A) is differentiable and

f(A)'(t) = Df(A(t))[A,(t)] (4.2)

at each time t E I. Df(A(t)), the derivative of f at the point A(t) E Psym,
is a linear transformation from Sym into Sym and thus may be regarded as
a fourth order tensor. Let

3

A(t) = Za,(t)e,(t) ® e,(t) (4.3)
i=1

be any time-dependent spectral decomposition of A. Let {f(A)'ij(t)}, {Akl(t) }
and {Yijk(t)} denote the components of f(A)'(t), A(t) and Df(A(t)), respec-
tively, relative to the principal basis {e1(t)}. Then the component form of
(4.2) is

3

f(A)j(t)= .Fijkl()AkW(t). (4.4)
k,1=1

It can be shown (see below) that

.ii(t) = f'(ai(t)), (4.5)
YTij(t) =Iijit

= 1 f(a,(t)) - f(aj(t)) if a,(t) # aj(t)
= 2 a,(t) -aj(t) (4.6){ fl(a,(t)) if a,(t) = aj(t) and i 4j,

=kl(t) 0 if {i,j} # {k, 1} . (4.7)

10



When (4.5)-(4.7) are substituted into (4.4), we obtain

f'(ai(t)) A,,(t) if a,(t) = a,(t)
f(A)=(t) f (a,(t)) - f(a 1 (t)) • (t (4.8)

ai(t) - aj(t)

This is the component formula on which our proof of Hill's Formula is based.
We emphasize that no smoothness restrictions on the principal basis {ei} are
required here; in particular, {ei} need not be a continuous function of time.

The component formulas (4.5)-(4.7) have been obtained by several au-
thors under various conditions. For analytic f see Hausner [7] and Kenney
and Laub [13]. Bowen and Wang [2] and Chadwick and Ogden [3] derived
component formulas for the derivative of an arbitrary isotropic tensor func-
tion. Their derivations are repeated in the books by Wang and Truesdell [21,
§6.4] and Ogden [18, §6.1.4]. Their results reduce to (4.5)-(4.7) when ap-
plied to the isotropic tensor function f corresponding to the scalar function
f. The formulas (4.5)-(4.7) are also stated on p. 162 of Ogden's book. None
of these authors state precisely the conditions under which their formulas
hold. However, it is not hard to show that their proofs, when specialized to
the case under consideration here, are valid under the assumption that both
f and f are C1. This raises a question which was not addressed by any of
the authors above. Can f fail to be C 1 if f is C'?

We claim that the smoothness of the scalar function f and the corre-
sponding tensor function f are related as follows:

1. If f is C1 then f is C1.

2. If f is Ck+1 (k = 2,3,...) then f is Ck.

3. If f is C- then f is C-.

4. Iff is Ck (k = 1,2,...,oo) then f is Ck.

Of course, the third result follows from the second. The fourth result follows
easily from definition (1.2). The first and second results will be established
below. We do not know whether "f is C k =* f is Ck " is true for k > 2.

With these results in hand, we can now give a simple but rigorous proof of
Hill's Formula, assuming only that the function f : R+ --+ R is C1. Since the
corresponding tensor function f is necessarily C', and since the right stretch
tensor U is a C1 function of position and time, it follows that f(U) is a C1
function of position and time, where position may be taken relative to either

I



the reference or the current configuration. By letting A = U in (4.8), we
obtain

Of'()U-ij if Ai = Aj
f(U)ij f(Ai) - f(Aj) i (4.9){v" if 1 # A,

relative to any Lagrangian triad. Now recall that the component formula
(3.5) holds relative to any corresponding Lagrangian and Eulerian triads.
By solving (3.5) for Uij and substituting the result into (4.9), we see that
Hill's Formula, equation (1.6), holds relative to any corresponding Lagrangian
and Eulerian triads if f is C1 .

It remains to establish 1 and 2 above. Recall that a function a : Psym -.

R is isotropic iff there is a symmetric function & : (R+) 3 -+ R such that

o(A) = &(a,a 2, a3), (4.10)

where {ai} are the eigenvalues of A (here A denotes a fixed but arbitrary
symmetric positive-definite tensor). Ball [1] has shown that a is C2 if & is
C 2 , and that a is Cr (r = 3,4,...) if & is Cr +1. If we set

3 Xl ,

(x 1 ,x 2 , X3 ) = JZf, (4.11)

then & is obviously symmetric, and & is Cr+1 if f is Cr. We claim that the
tensor function f corresponding to f is the gradient of the isotropic function
a corresponding to &:

f(A)=Va(A), VAEPsym. (4.12)

Then 1 and 2 above follow from the Ball's results; for example, f is C' =,>
& is C2 =- a is C2 => Va is C' = f is C1. To prove (4.12), first note that
Va : Psym --* Sym is isotropic since a is isotropic; hence every principal
basis of A is a principal basis of Va(A). If A = Ei= aje, ® ei is a spectral
decomposition of A, it follows that

3
Va!(A) = ej ® ei  (4.13)

for some {a}. Then, for example,

a,= el" V'(A)ej = Vo(A) .(el ® el)
- d (A + te, 9el) -- _&(a + t, a2 ,a3 )

d djalt =f(a,).
7t- 

ot=o
Similarly, Q 2 = f(a 2) and 03 = f(a 3). Then (4.13) and (1.2) yield (4.12).
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5 Component formulas for the rates of f(V)

Since the left stretch tensor has the spectral decomposition

3

V=ZAiv,®v,, (5.1)

f(V) has the spectral decomposition

3

f(V) = f(Ai,)v, ® v,. (5.2)

The class of generalized Eulerian strain tensors consists of all tensors of the
form (5.2) for some strain measure f. Hill [8,9,10] confined his analysis to the
class of generalized Lagrangian strain tensors. Both classes of strain tensors
and their rates have been discussed by Wang and Truesdell [21], Nemat-
Nasser [15,16] and Ogden [18]. Here, as in the previous section, we assume
that f : R+ --+ R is any C1 function. Then f(V) is also C'.

From (5.2), (3.8) and (1.4), it follows that

f(V) = Rf(U)RT. (5.3)

Let ft denote the spin of the rotation tensor R:
n2 = IR T = -RA T = -n T . (5.4)

Since vi = Rui, ft may be interpreted as the relative spin of the Eulerian
and Lagrangian triads. However, even when these triads axe discontinuous
functions of time, f is continuous since R is C1 . From the polar decompo-
sition and the identity F = L F, we find that fZ and the spin tensor W are
related by the following formula (Truesdell and Noll [20]):

W = n + 1R(UU- 1 - U-,U)RT. (5.5)
2

It will be convenient to introduce the following corotational rates of a tensor
field :

*-0 + -- Wo (5.6)

and
I"_) + fn - fo. (5.7)

O is usually called the Jaumann rate of 0. By taking 0 = f(V) in the

above, we see that

f(v) = f(V) 0 + Wf(V)- f(V)W

= f(V)" + fl(V) - f(V)f1. (5.8)

13



By taking the material time derivative of (5.3) and using (5.4) and (5.8)2, we
obtain

f(V)- = Rf(U)" RT. (5.9)

Let {f(V)',j}, {f(V)°ij}, {f(V)*,j}, {SI,} and {Wj} denote the compo-
nents of f(V)', f(V) °, f(V)*, fl and W, respectively, relative to the Eulerian
triad {vi}. Then the component form of (5.8) is

f(Y)', = f(V)jj -[f(A,)- f(Aj)]Wj

= f(V)*j, -[f(A,) - f(Aj)]D1j, (5.10)

relative to any Eulerian triad. The component form of (5.9) is

f(V)'ij = f(U)'ij, (5.11)

relative to any corresponding Lagrangian and Eulerian triads. Then Hill's
Formula yields a formula for f(V)*ij in terms of Dij; by substituting that
formula into (5.10)2, we obtain a formula for f(V),. in terms of Dij and 1ij,
relative to any Eulerian triad. In particular, from (5.10), (5.11) and Hill's
Formula, we see that relative to any corresponding Lagrangian and Eulerian
triads,

f )'ij = f(V)*,j = (y)*j
= f(U)' = Ajf'(Aj) Dij if h) = A,. (5.12)

The component form of (5.5) is (Hill [10])

Wh = i+ A-j j, (5.13)

relative to any corresponding Lagrangian and Eulerian triads. By solving
(3.5) for -iU and substituting the result into (5.13), we obtain (Hill [10])

S i - Aj Dij ,  (5.14)

relative to any Eulerian triad. Then from (5.10), (5.11), Hill's Formula and
(5.14), we obtain

M= + 2 f(Ai)- f(A.)
* = ,J Dij if Ai 6 , (5.15)

relative to any Eulerian triad. This, together with (5.12) and (5.10)1, yields
a component formula for f(V)'j, in terms of Dij and W1j, relative to any
Eulerian triad. Also, from (5.15), (5.12),(5.11) and Hill's Formula, we obtain

A2 + ,A2

f(V)*1 = 2= h f(V),, (5.16)
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relative to any Eulerian triad.
That the above component formulas for the rates of f(V) hold for any C

motion and any C1 function f is established here for the first time. For dis-
tinct principal stretches, these formulas can be obtained from the component
formulas in Nemat-Nasser [15,16].

Note that while our formulas for f(V) ij and f(V)°ij involve components
relative to the Eulerian triad only, our derivation of these formulas made
use of Hill's Formula, which involves components relative to the Lagrangian
triad. We now show how these formulas can be derived without recourse to
Hill's formula. From the identity F = LF, we obtain

b=BD+DB+WB-BW, (5.17)

where B = FFT = V 2 is the left Cauchy-Green tensor. Let {,j} denote the
components of V' relative to the Eulerian triad. Since b = VV + VV, the
component form of (5.17) is equivalent to

-=A + j Dij - (Ai )Wi, (5.18)

relative to any Eulerian triad. From (4.8) with A = V, we have

f(Ai) Vij if Ai = Aj

f{V)'ij f (A ) i if () f, (5.19)

relative to any Eulerian triad. By substituting (5.18) into (5.19) and using
(5.10),, we obtain (5.15) and (5.12),,4. From these results, (5.10) and (5.14),
we find that f(V)*ij is given by the right-hand side of Hill's Formula and
that (5.16) holds.

We can also derive the formulas for f(V)*ij as follows. Let h denote the
tensor function corresponding to the C1 function h : R+ -- R. By setting
f = h, A = B and a1 = b - A? in (4.8), and then using the identity (5.17),
we obtain

2bih'(b) Dj if bi = bj
h(B)'ij - h(b) - h(bj)

b) - bi D,-[h(b,)-h(b)WIV ifb, 9
(5.20)

where {h(B)',,) denote the components of h(B)" relative to the Eulerian
triad. If we now set h(X2) = f(z), then h(B) = f(V) and thus h(B)'i, =
f(V)'ij. Hence, the formulas (5.12)1,4 and (5.15) follow from (5.20) and
(5.10)1.
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6 The logarithmic strain tensors

In this section we consider the generalized strain tensors f(U) and f(V)
corresponding to the logarithmic strain measure f = In. To be consistent
with our scheme of notation these tensors should be denoted by In(U) and
In(V). However, it is customary to denote the logarithmic strain tensors by
In U and In V, and we will follow this practice here.

The importance of the logarithmic strain tensors is uue in part to their
simple relation to the stretching tensor for certain simple motions. For exam-
ple, for a pure stretch (R = I) with fixed Lagrangian triads, we have V = U
and

(In V) (In V)° = (In V)" = (In U)' = D. (6.1)

By "fixed Lagrangian triads" we mean that the Lagrangian triad correspond-
ing to a given material point X is fixed, i.e., time-independent, but we allow
the possibility that the triad may vary with X. If we assume only that the
Lagrangian triads are fixed, then since their spin C2 is zero the formulas in
§3 and §5 imply that Dj = 0 for i # j, and

W = f = ART, (6.2)

(InU)'= tJU-' = U- 1 U = Db, (6.3)

(In V)" = (In V)° = V°V -' = V-'V° = D, (6.4)

(in V)' = D + W(ln V) - (In V)W. (6.5)

When R = I, we recover (6.1). The formulas (6.2)-(6.5) are actually valid
under conditions slightly weaker than the condition of fixed Lagrangian tri-
ads; see Gurtin and Spear [6] and Hoger [11]. None of the formulas above
hold in general, as can be seen from the component forirulas below.

For the remainder of this section we assume only that the motion X is
C2. From (5.12) we obtain the component formulas

(In V)'ij = (In V) ° i = (In V)'1j = (in U)ij = Dij if Ai = Aj. (6.6)

Let
hij = A,/Aj (6.7)

and

lij = In Aij -= In Ai - In Aj = -iji. (6.8)

Then from (5.11), Hill's Formula and (5.15), we obtain the following compo-
nent formulas when A, 6 Aj:

(InV)> = (lnU)*, = .2 A*A. InA-InA j
Aj + Aj Ai - Aj

= 2Aij In Aj Dij ij(69)
A2 . - 1 sinhlij
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and

(in V)+ A+ In Ai - In AjiD
(n + Aj Ai-A j
A i. + I ~

_ (InA.)D..= -- D..• (6.10)
A?. - 1 tanh lij

Component formulas for (In V),j when A, 5 Aa follow from (6.7)-(6.10) and
the component formula

(In V)ij.= (In V)i 1 -l. Wj = (In V)*ij - liinij, (6.11)

which follows from (5.10). These component formulas are valid relative to
any corresponding Lagrangian and Eulerian triads. Note that all of the com-
ponents depend on the principal stretches only through their ratios, and thus
are unaffected by the dilatational part of the deformation. For (In U)'ij this
was first observed by Hill [9,10]. In fact, by (5.12) we see that this condition
characterizes the logarithmic strain measure. That is, the logarithmic strain
measure is the only strain measure f such that, for all C 2 motions, the com-
ponents of any one of the tensors f(U)', f(V)', f(V)* or f(V)* depend on
the principal stretches only through their ratios.

The last expression for (In U)'i, in (6.9) has been noted by Mehrabadi and
Nemat-Nasser [14]. The other formulas for (In U)'ij are due to Hill [9,10]. The
derivations given by these authors are valid for the case of three distinct prin-
cipal stretches. For the other cases, the first rigorous proof of the formulas
for (In U)',j is due to Hoger [11]. Hoger derived basis-free formulas for (In U)"
and then claimed (without providing additional details) that those formulas
imply Hill's component formulas. For the case of three distinct principal
stretches, Hoger's basis-free formula is so complicated that a verification of
this claim would involve some horrendous algebraic manipulations. On the
other hand, it is only when some of the principal stretches are repeated that
Hill's derivation breaks down, and for these cases Hoger's basis-free formulas
are sufficiently simple that the corresponding component formulas can be
obtained without much effort.5

5Equation (5.11)2 for the coefficient e2 in Hoger's [11] formula for (InU)' contains a
misprint-the minus sign should be applied only to the first term in the numerator, not
to the entire right-hand side.
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